

Technical Specifications

AC Operating Voltage:
85 – 264 VAC, 48 – 62 Hz

AC Power Supply
Certification:
UL, CE, CISPR/FCC Class
B

DC Input Operating
Voltage:
10 to 30 Volts DC

DC Output Power:
24 Volts DC, 0.5 Amp (for
4-20mA transducers)

12 Volts DC, 1 Amp
(intermittent for 5 Watt
external radio)

AC Power Consumption:
<0.5 Amp

DC Power Consumption
(at 24VDC):
0.1 Amp to 2 Amps
depending on active
input/output loads and
option boards

On-Board AC Input Fuse
Rating:
Field replaceable 2 Amp
115 VAC

AC Input Transient
Protection:
Yes, 10,000A 120 Joule
150V MOV on board

DC Input Transient
Protection:
Yes, field replaceable 2A
fuse and 1500W MOV on
board

Weight:
1 Pound

Storage Temperature
Rating:
-40°C to +85°C

Operating Temperature
Rating:
-10°C to +75°C (0 to 40°C
for AC-powered version)

Humidity:
15-95% non-condensing

Input/Output Specifications

Analog Input Channels:
2(VS2), 8(VS4)

Analog Input Resolution:
16-bit

Analog Input Signal
Type:
0-20 mA grounded, 0-5
Volt DC, 0-10 Volt DC

Analog Input Transducer
Power Source:
May be external or use
on-board supply

Analog Input Transient
Protection:
600W TVS surge and RF
filters

Analog Input Transducer
On-Board Power Supply:
On-board 24 VDC with AC
power or ~1 Volt below DC
supply Voltage

Digital Input Channels:
2(VS2), 8(VS4)

Digital Input Channel
Signal Type:
Low voltage (5V) contacts
or logic level

Digital Input Signal
Voltage Required:
None

Digital Input Signal
Transient Protection:
600W TVS surge and RF
filters

1

Digital Input Signal
Status Indication:
On-board LEDs, one per
channel

Digital Input Signal
Cable Length:
Maximum 50 feet
recommended

Digital Input Signal
De-Bounce Time:
Approximately 0.2 seconds

Analog Output
Channels:

4(VS4)

Analog Output
Resolution:
16-bit

Analog Output Signal
Source:
Each output may be driven
by any register in the RTU

Analog Output Scaling:
Fully configurable by user

Relay Output Channels:
3(VS2), 4(VS4)

Relay Contact Ratings:

SPDT 10 Amp at 115 VAC,
5 Amp at 30 VDC

Relay Output Signal
Indication:
3-4 on-board LEDs, one
per channel, show relay
states

Relay Control Source:
Any RTU register

Relay Control Method:
Approximately 40 relay
control methods

Modbus and Communication

Modbus Slave Connections (Data
Retrieval and RTU Config):
RS-232, RS-485, and USB. All may be used
simultaneously.

Modbus Master Connections (For Polling
Remote Devices):
RS-232, RS-485. Both may be used
simultaneously.

Number of Remote Modbus Devices That
May Be Polled:
256

Remote Device Baud Rates:

1200, 2400, 4800, 9600, 19200, 38400.
Each device may be different.
On-Board Radio Option:
LoRa 900MHz 1 Watt ISM Module plugs in.

Transducer On-Board Power Supply
Protection:
Yes, current limited with electronic fuse

Inputs That May Be Monitored by
Modbus:
Every analog input, digital input,
temperature, and DC voltage

Outputs That May Be Controlled by
Modbus:
Every analog output and digital output

2

SYSTEM CONFIGURATION &
PROGRAMMING

The RTU is a very complex device with many settings. It is also a little complex to
program, however most applications may still be configured very quickly. In normal operation the
RTU continually gathers data from its own signal inputs, such as the analog inputs. This data is
stored in volatile (RAM memory, i.e. contents are lost if the power is removed) local memory.
The RTU controls the local outputs such as the relays and analog outputs in many different
ways. It responds to Modbus commands that arrive via the System serial port, it may poll remote
devices for data via the Polling serial port or it may act as a 'slave' device to other Viking Scada
devices.

The RTU has thousands of user adjustable non-volatile settings instructing it how to do
all of these things, and another 1000 or so volatile registers that contain the result of various
inputs or calculations. All of these registers may be read and written to by the user, to effectively
configure and take data from the device. All of these registers may be accessed by serial
Modbus commands coming into the System serial port. A few communications-related settings
may also be accessed by using the WiFi interface using a web browser on a mobile device or
computer. The RTU stores all of its settings inside non volatile memory on the PCB where they
will remain until the unit is reconfigured. Connection to power is not required to
maintain these settings; there are no batteries or similar volatile devices required for
configuration storage.

Any general purpose Modbus master program (such as QuickMod by Azeotech) may be
used to configure the device. However, because of the complexity, a custom PC program called
VikingScada is provided by Viking Scada that allows user-friendly configuration of the RTU; it
may also be used to display the current RTU inputs. However the configuration is changed the
net result is the same, registers inside the RTU memory will have been changed and the RTU
will now operate using the latest settings.

The full Modbus map is provided in a separate section which identifies every register
inside the device. All features and functions are primarily described in terms of physical signals
and Modbus registers, but some examples of configuration using VikingScada or the WiFi
interface may also be provided.

Serial Port Configuration and Data Access
The System communication port has several configuration settings. The baud rate,

Modbus Gap Time and Modbus Address may all be changed. Common settings may be entered
from the WiFi interface. If any of the Modbus parameters are changed they will become effective
immediately, so if a Modbus master is communicating with the RTU it will need to change its
own communication parameters to match the RTU’s new ones.

3

The Modbus specification has very strict definitions for the time a slave device should
take to respond to commands from a Modbus master and the time that a gap between
successive bytes in a packet may be. In ideal circumstances these definitions may work, but in
real applications where the RTU may be used with phone modems, data radios, leased line
connections, PCs, RS-232 to RS-485 data converters, internet connections etc. they may not
always work. The Modbus Gap Time allows adjustments to enable communications via various
pieces of equipment that may introduce delays. Modbus RTU messages start and end with a
silent interval of at least 3.5 character times, which for a baud rate of 9600 bps is approximately
4 ms. The RTU is capable of reading a Modbus message, acting on the message, formulating a
reply, then start transmitting it back to the Modbus master device as soon as this 4 ms time
expires. The RTU is also capable of monitoring the Modbus data and detecting a gap between
bytes in a message that is 4 ms in length for example.

Normally Modbus messages from a master, such as from a local PC with a built in serial
port will usually have correctly formed data packets without any gaps between bytes. However,
if there are gaps between bytes of more than 4 ms the RTU units may assume the packet has
ended, process it and since the packet is not complete the RTU unit ignores the packet and
does not reply. The Modbus master then indicates an error reporting that the RTU device did not
reply to a Modbus message, when in fact a legal Modbus packet was not presented to the RTU
device. This type of error seldom occurs on modern PC systems with a hardwired local
connection; however they will occur when a telephone modem, radio or similar device is
between units on a Modbus network. Even short packets of data sent directly between two
telephone modems often result in smaller bursts of data at the receiving modem, separated by
gaps of several milliseconds. The problem may also occur when some RS-485 interface devices
are used that incorporate ‘automatic transmit enable’ circuits; these devices often use simple
RC timing circuits to enable the driver output, with the result being they may still be driving the
Modbus connection and corrupting data several milliseconds after the bus should have been
released, when the RTU unit is trying to send a reply.

To overcome these problems the user may set the gap time in ms. Extending the gap
time will delay a response to the Modbus master, so it should not be extended too long, or the
Modbus master’s own timeout settings may need to be extended.

 Warning
If this delay is set to very small values Modbus communication problems may occur,

especially with remote modems and similar devices. It is possible to completely lose remote
Modbus communications, and lose the capability to change the configuration back! If this
occurs a direct serial or WiFi connection may be required to regain Modbus control to return
modified registers such as the gap time, back to values that allow functionality with connected
equipment.

4

For this reason if an RTU device is accessed within the first 30 seconds after powering
up, it will ignore the user’s Baud Rate and Gap Time silent time setting and use a Baud Rate
of 9600 baud and Gap Time of 3 ms, therefore allowing communication with most standard
devices. This gives the user (and the RTU configuration program) a means to restore settings
that have been changed to inoperative ones.

​ Viking Scada devices include an onboard LoRa radio module that enables long distance
wireless communication between masters and slaves. When using the radio for
communications, it must be configured to transmit and receive on one of 27 channels (channel 0
- 26). By default every RTU using a particular channel receives traffic from every other unit on
that channel, similar to how an RS-485 bus works.

If multiple networks of RTUs are operating on the same channel, a Group Address must
be configured to prevent each network from receiving traffic from the other. Setting a non-zero
Group Address sets the LoRa “Address” field to the Group Address value and enables the LoRa
“Fixed Point” transmission mode. This does use the NET ID feature found in some LoRa radios.
Instead, all radios use the same address in fixed point mode to achieve isolation. The Group
Address can be thought of as a sub-channel, but radios using the same channel with different
Group Addresses can still have RF interference. The Group Address is only for filtering the data
that each RTU receives from the radio module (the radio still receives all traffic on its configured
channel).

Inputs
There are 2 (VS-2) or 4 (VS-4) analog/digital inputs on the RTU. Each may be

configured for analog (0-20mA, 0 to 10 Volts DC, 0 to 5 Volts DC), or digital (dry contact
closures, switches, relay contacts, open collector transistors, pulses) by moving a jumper
located by each input. The RTU firmware is not aware of the actual signal type being used; the
jumper location simply changes the load resistance and input type.

The Modbus map is common between several devices (VS-2, VS-4, etc.) and allows for
32 inputs on an RTU. Only the registers that are applicable to a specific RTU type are
populated.

Analog Inputs
When the onboard jumpers are set to either of the analog modes the inputs will be

constantly read to sample the incoming analog signal levels, and the (16-bit) ‘raw’ result of
these reads are placed directly into 32 Modbus registers starting at address 800. Also, at the
end of each sample, a scaling conversion will be performed and the scaled values (engineering
units) will be placed into Modbus registers starting at 768.

Typically engineering unit values are more useful than raw input values, for example a
tank level of 0 to 20 FT, or a pressure of 500 to 2500 PSI. The RTU may scale the raw values,
and the scaled values will then be placed in the scaled analog input registers starting at 768.
The operator may then use either raw or scaled (or both) values for various control functions.

5

To generate scaled values five scaling parameters need to be entered:
●​ Scaling Input Span Low Value
●​ Scaling Input Span High Value
●​ Scaling Output Span Low Value
●​ Scaling Output Span High Value
●​ Display Format

The Input Span values correspond to the range of the Analog Input to be scaled. The Output
Span values correspond to the range of the Scaled Values. The Low Input Span Value maps to
the Low Output Span Value, the High Input Span Value maps to the High Output Span Value,
and values in between are scaled linearly. The Display Format is for informational purposes only
and does not affect the scaling calculation, but it can be used by users reading the scaled
values to know how many decimal places are intended to be in the scaled result. The Display
Format must not be set to Pulse Counting mode (value 14) when scaling analog inputs.

This scaling method provides flexibility and makes it easy to correct for scaling errors, for
example due to the density of a fluid not being 1, such as saltwater. Whether the inputs are set
for 0-20 mA, 0-10 Volts or 0-5 Volts, the scaling process is exactly the same.

Example 1:
Take a 4-20 mA flow transducer that outputs 4 mA at 0 bbl/day and 20 mA at 100

bbl/day. At top of the range (100 bbl/day = 20 mA at Analog Input) the RTU reads a raw analog
value of approximately 65535. At the bottom of the range (0 bbl/day = 4 mA at Analog Input),
the RTU reads a raw analog value of approximately 9828. Therefore the scaling feature needs
to map the 13107 - 65535 raw range to the 0 - 100 bbl/day engineering range. This is set as
follows:

●​ Scaling Input Span Low Value = 13107
●​ Scaling Input Span High Value = 65535
●​ Scaling Output Span Low Value = 0
●​ Scaling Output Span High Value = 100

Example 2:
​ The Modbus values are all integers and do not contain decimal places. However another
set of configuration registers (starting at 6608) contain information on displaying a decimal point
or multiplying the result by powers of 10. Take the same transducer from Example 1, but if the
user needs to see 99.25 bbl/day instead of 99, this can be taken into account by adjusting the
Output Span Values and noting the two decimal places in the Display Format registers. This is
set as follows:

●​ Scaling Input Span Low Value = 13107
●​ Scaling Input Span High Value = 65535
●​ Scaling Output Span Low Value = 0
●​ Scaling Output Span High Value = 10000
●​ Display Format = x0.01

6

This means the Output Span Low and High values both are specified in counts of 0.01 instead
of counts of 1. Therefore an input value of 39321 (= 12 mA = 50 bbl/day) produces an output
value of 5000 (= 50.00 bbl/day).

Digital Inputs
When the onboard jumpers are configured as digital inputs or for pulse counting

applications a pullup resistor supplies a current limited 5 Volt signal source to the relevant
connector pin. As the input is shorted to ground by an external circuit, switch or dry contact a
green LED will illuminate by the input indicating an ‘active’ digital input. When a digitally
configured input is open circuit (i.e. ‘OFF’), the LED will be extinguished and the value read for
that raw analog input will be approximately 65535, this will drop to approximately zero when the
input is shorted or ‘active’.

The raw analog measurement values are scaled just the same as if the onboard jumpers
were set to either analog input setting, but typically there is no need to scale the raw values
when used as Digital Inputs. To use a Digital Input in pulse counting mode, the Display Format
register is set for pulse counting mode, then the scaled value will be a count of the number of
pulse edges irrespective of the Input/Output Span Values. The pulse count continues to 4095
then wraps back to zero. (It does not wrap at 65536 to maintain 4G protocol compatibility).

Analog Outputs
There are 0 (VS-2) or 4 (VS-4) analog outputs on the RTU board. Each output is capable

of driving a signal from 0 to 20 mA. The RTU provides the source current, so there is no need
for an external supply. The negative side of the load is connected to ground at the RTU. The
logical signal that drives each analog output may be any Modbus register in the RTU, so the
analog outputs may reflect any data that the RTU is aware of.

The digital-to-analog converter chip always outputs 0 mA for a raw value of 0 and 20 mA
for a raw value of 65535. The analog outputs may also be scaled, so virtually any field
application may be accommodated. The scaling is configured similar to the Analog Inputs, but
typically only the Input Span needs to be configured. The Output Span is typically left as the
default 0 - 65535. With the Output Span set to the defaults of 0 - 65535, the Input Span can be
thought of as the Low Value setting the Analog Output to 0 mA and the High Value setting the
Analog Output to 20 mA. To generate scaled values four scaling parameters need to be entered:

●​ Scaling Input Span Low Value
●​ Scaling Input Span High Value
●​ Scaling Output Span Low Value
●​ Scaling Output Span High Value

Example 1 - Basic Analog Input Mirror:
To set an Analog Output to mirror a 4-20 mA Analog Input, the scaling parameters are

set as:
●​ Scaling Input Span Low Value = 13107

7

●​ Scaling Input Span High Value = 65535
●​ Scaling Output Span Low Value = 0
●​ Scaling Output Span High Value = 100

Example 1 - Advanced Analog Output from Modbus Slave:
Take a 4-20 mA flow transducer that is set as a polled Modbus device. The transducer

has a Modbus register that provides the present flow from 0 bbl/day to 100 bbl/day as a number
0 to 100. To generate a 4-20 mA signal on an Analog Output for the 0 - 100 bbl/day range, the
Source Register is set to point to the Live Value read from the Modbus device, and then Scaling
Output Span needs to be set. At top of the range (100 bbl/day), the RTU needs to output 20 mA
(Analog Output = 65535). At the bottom of the range (0 bbl/day), the RTU needs to output 4 mA
(Analog Output = 13107). This is set as follows:

●​ Scaling Input Span Low Value = 0
●​ Scaling Input Span High Value = 100
●​ Scaling Output Span Low Value = 13107
●​ Scaling Output Span High Value = 65535

Digital (Relay) Outputs
There are 3 (VS-2) or 4 (VS-4) SPDT relays on the RTU board. There are many ways

each relay may be controlled. The diagram below shows the options possible for controlling
each of the relays.

8

Each relay has a relay source control register which points to a memory location
controlling when the relay is active. Typically if this unit is to be used as a Viking Scada 4G
‘slave’ each register is aimed at the ‘4G mode register’ which is controlled by the polling master
RTU unit or PC. This is the default setting. In this case the relays are driven via a Modbus
register that is controlled by the Viking Scada ‘master’. However each relay may also be
assigned (locally, in this RTU) to be controlled by any register in this device. So as an example
the first 4 relays could be controlled by a polling master but the remaining ones may be
controlled by any register in the unit. If the control register that a relay is aimed at contains 0 the
relay is inactive (i.e. off, the same state as if the board is not powered), and any other value
turns the relay active (on). For very simple applications a relay control register may be aimed
directly at a suitable control register. For example, setting register 6709 to contain 8664 means
relay 6 will be driven by Modbus register 883, which contains the first volatile user register. If a
user writes 1 to 883, the relay turns on. If the user writes 0, the relay turns off. Most relay
controls are more complicated than this, and may require setpoints, hysteresis etc. The Viking
Scada contains ‘special’ registers that may be configured for complex control purposes; and of
course relays may then be aimed at the special registers for applications such as tank level
control, relay activation on transducer out of bounds alarms etc. See the section on ‘special
registers’ for a full explanation.

Special Registers
The 32 special control registers may be programmed to contain the results of certain

parameters. These would typically be used to drive relays but may be used for other
applications as well, allowing great flexibility for special control routines such as tank level
controls, alarm outputs etc. They may be combined with other control routines such as the
toggle functions to provide multiple complex controls that will often replace extensive
programming in a typical PLC. Note that the control results will be stored in the special register
‘results’, not assigned to specific relays, so to use them for relay control the respective relay
needs to be 'aimed' at the specific special register ‘result’.

There are many modes that can be used, some will require additional register pointers to
use data sources, for example a register that may contain a tank level or user set points such as
trip levels. First of all the control routines have to be set to an operating mode via the control
register; there are over 40 modes available:

●​ Setting the control register to 0 effectively disables the special register ‘result’
and it will always be turned off.

●​ Setting the control register to 1 turns on the ‘result’ and it will remain on
whenever the RTU is powered up.

●​ Setting the control register to 2 invokes 16-bit ‘drain level control’ for the
respective ‘result’.

○​ In this mode a 16-bit Modbus register will be monitored (specified by
control source pointers, 8312 to 8343).

○​ When this signal level exceeds the ‘high’ trip point (specified by every
second register 8344 to 8407) the ‘result’ will be energized.

9

○​ When this signal level is below the ‘low’ trip off point (specified by every
second register 8408 to 8471) the ‘result’ will turn off.

○​ This is effectively a tank level control system with hysteresis where the
‘result’ controls a pump that drains the tank. Once the level is above the
high trip point the pump starts, and remains on until the level drops below
the low trip off point. It may of course be used for many other applications
such as an alarm when a pressure value is too high.

●​ Setting the control register to 3 invokes 16-bit ‘fill level control’ for the respective
‘result’.

○​ This is identical to drain level control except the ‘result’ is energized when
the control level falls below the low trip point, and turns off when the
control signal is above the ‘high’ trip point.

○​ It is typically used where a pump fills a tank, or an alarm is activated when
levels become too low.

●​ Setting the control register to 4 causes the ‘result’ to be on if the Modbus source
register is not equal to zero; it will be off if the source register is any other value.

●​ Setting the control register to 5 causes the ‘result’ to be off if the Modbus source
register is not equal to zero; it will be on if the source register is any other value.

●​ Setting the control register to 6 through 21 causes the ‘result’ to be activated
when a single bit is set in the control register.

○​ Bit 0 is checked for a control register value of 6
○​ Bit 1 is checked for a control register value or 7
○​ ..
○​ Bit 15 is checked for a control register value of 21

●​ Setting the control register to 22 through 37 causes the ‘result’ to be activated
when a single bit is clear in the control register.

○​ Bit 0 is checked for a control register value of 22
○​ Bit 1 is checked for a control register value or 23
○​ ..
○​ Bit 15 is checked for a control register value of 37

●​ Setting the control register to 38 invokes 32-bit ‘drain level control’ for the
respective ‘result’.

○​ This uses the same logic as the 16-bit ‘drain level control’ but uses 32-bit
control registers.

●​ Setting the control register to 39 invokes 32-bit ‘fill level control’ for the respective
‘result’.

○​ This uses the same logic as the 16-bit ‘fill level control’ but uses 32-bit
control registers.

●​ Setting the control register to 40 uses the polled device network status to set the
‘result’.

○​ The ‘result’ is on if all devices are successfully operating and
communicating with the RTU.

○​ The ‘result’ is off if no remote devices are communicating with the RTU.

10

○​ The ‘result’ slowly toggles between on and off if some but not all remote
devices are successfully communicating

Special register configurations also include Trip On Delay and Trip Off Delay

parameters. This is used to let the input condition settle before changing the output. The Trip On
Delay sets a delay between the control condition going from Off to On and the Live Value
changing from Off (0) to On (65535). The Trip Off Delay sets a delay between the control
condition going from On to Off and the Live Value changing from On (65535) to Off (0). When
one of the delays starts counting because the input condition changed, the count will be
restarted if the condition changes back. This prevents noisy or chattering inputs from chattering
the outputs.

Example: Special Register Lead / Lag Tank Level Control
This example shows how a common application for tank level control may be set up, with

a 'lead' and 'lag' pump output relay. This example will be for pumps that drain the tank; a tank fill
version is almost identical with reversed on / off set points. Typically these systems have a 'lead'
pump that comes on first when the process level reaches a user preset high 'turn on' trip point. If
the fluid continues to rise it may reach a second 'trip point' when the 'lag' pump will turn on.
When the fluid level recedes to the respective 'trip off' points each pump will shut down.
Although the lead and lag pump typically use the same process variable (fluid level) as the
source, each has independent 'trip on' and 'trip off' set points.

First set up the analog input to be used for the level control. We will use a 4 - 20 mA 0 -
10 PSI transducer, which with water will correspond to a full scale height of 23.1 ft. We will
display the level in VikingScada with a resolution of 0.1 ft, so the format multiplier will be set to
x0.1 with an output span high of 231. The 4 - 20mA transducer will show 65535 as the 20 mA /
23.1 ft input level, and 4.0 mA will correspond to 13107 or 0 ft.

Next we configure the lead (special 1) and lag (special 2) registers. Set them both to
high trip for tank drain applications. They will both use a control source of 768, which is the
scaled register for analog input 1 (un-scaled is 800). The value in 768 will vary between 0 (0 ft)
and 231 (23.1 ft). If the value goes above the high trip control point (17.5 ft for the lead, 19.0 ft
for the lag) the respective outputs will turn on, i.e. special registers 1 (883) & 2 (884) will then
contain 65535. They will remain that way until the control source drops below the low control trip
point (16.0 ft for the lead, 16.5 ft for the lag) when they will revert to containing 0.

11

Any relays that are aimed at 883 and 884 will then be driven by these special registers

as shown for the first two relays. By setting these parameters the level control can quickly be
implemented. The high / low trip points may be changed by any local or remote Modbus device,
typically a flat panel display.

Toggle Registers and Routines
Often it is desirable to toggle certain registers depending on events. This capability is

frequently used for dual pumps, where redundancy and equal wear is required. There are 4 sets
of toggle functions that may be used, they are all used in a similar manner. The ‘outputs’ will be
sent to the toggle results, which are the first 8 of the reserved special registers (915 to 922). The
toggle functions operate by copying the contents of any two preset registers in the RTU to two
toggle result registers. When the value in the first preset register drops to zero the two toggle
result register contents will be ‘swapped’, ie the contents of the first preset will go to the second
toggle result, and the contents of the second preset will be copied to the first toggle result. This
signal ‘routing’ will remain that way until the preset register 1 contents changes to a non zero
value and back to zero again. The toggle registers must be written directly, with 2 registers per
toggle function pair (6953, 6954 for the first pair, 6955, 6956 for the second, 6957, 6958 for the

12

third and 6959, 6960 for the fourth). This method allows for easy lead / lag pump swapping,
although it may be used for other purposes.

There are 64 special registers (883 - 946). The first 32 (883 - 914) are the ‘results’ of the
32 special register functions. The second 32 (915 - 946) are reserved for general purpose user
functions, but the first 8 of these (915 - 922) are used by the toggle function if it is configured. All
64 special registers are in volatile RAM memory so the contents will be lost upon power failure;
they will be loaded with zeros upon power up.

Example: Toggle – Adding pump switching to the Special Register example
above

In the above lead / lag example one pump would perform most of the pumping. It is easy
to add duplex switching capability by using the toggle function. Assume the lead / lag example
above is already set up. We will drive relays 3 and 4 in a lead / lag in sync with the first two
relays, however relays 3 & 4 will toggle the lead routing at the end of every lead call, this way
the wear and run times will be spread between the two pumps connected to relays 3 and 4. As
shown below Relays 3 & 4 will be aimed at the first two toggle output registers 915 & 916.

Next using the Modbus Values tab change the contents of the toggle lead register (6953)

to 883 (special register 1 output, i.e. the lead call) and toggle lag register (6954) to 884 (special
register 2 output, i.e. the lag call). Now the toggle function will automatically switch the routing
as needed every time a lead call ends, sending the results to the two registers 915 and 916.
Since relays 3 & 4 are aimed at 915 and 916 they will perform the same lead / lag output as
relays 1 & 2 but with the lead call switching between relays 3 & 4. Note that the toggle routines
are called about every second to reduce relay chatter if incorrectly programmed or fast changing
signals are applied. To disable the toggle function write a 0 or 65535 to either of the toggle
source registers (6953 or 6954 in this example).

13

Sticky Registers
Sometimes control registers are used that need to retain contents during power cycles;

these are called Sticky Registers. For example, a cyclic satellite may transmit periodic
commands to the RTU such as a VSD speed control. The satellite typically comes by every 1 ½
hours, and if the RTU power is cycled during that time the most recent speed command should
be restored by the RTU upon power up.

There are 256 sticky registers in the RTU that are available for general purpose use,
starting at 8664. The registers are stored in non-volatile EEPROM memory so are not
dependent upon power. Like all registers they do however have a limited write capability
(typically 10,000 to 100,000 writes). The RTU contains intelligent routines that attempt to limit
over writing to the memory. When a write is made it is not be saved for a second or so (the blue
4G led flashes quickly) in case the user immediately changes the value. Also the RTU does not
write the same value to an existing value in EEPROM (it is simply ignored) so it is safe to
continually write the same value to a Sticky Register.

Polling Port Device Setup - Master & Slave
Configuration

The RTU may be set up in two basic modes, Master or Slave, each with many
permutations available. The RTU may also be set up to communicate with other devices using
one of three communication modes: RFScada 4G, Modbus, or RFScada Classic. The RFScada
4G and Classic protocols are not exclusive to RFScada devices (Viking Scada devices use both
protocols as well); their names have been kept to avoid confusion. The RFScada 4G protocol
may be referred to as simply the 4G protocol in this document.

14

The first main mode is as a Slave device, where other devices may poll this RTU
requesting data and sending commands to it. This would typically be used if this RTU were to be
accessed via a SCADA system or PC, another Viking Scada RTU that was the system ‘master’,
or another third party device that could poll this RTU. In the slave configuration the RTU may be
set to respond to Modbus commands or RFScada 4G commands, so can operate in a mixed
system. It may also be set to emulate two smaller RFScada units using an older RFScada
protocol for compatibility with non-4G legacy RFScada systems.

If configured as a Master the RTU may poll many types of device, such as other Viking
Scada units using the 4G protocol and almost any Modbus device.

The descriptions in this section exclusively refer to the VikingScada software since the
polling configuration involves many Modbus registers. However, all configuration can also be
done using only Modbus registers.

For reference, the relevant tab in the VikingScada software is shown below:

Polled Device Setup - Slave Configuration
In this mode the RTU must be assigned an address that is unique to the ‘network’,

ranging from 1 to 255. The protocol used to communicate with the RTU also must also be
defined, and typically is set to be RFScada 4G mode or Modbus. Note that 4G and Modbus
protocols can co-exist on the same network, so 4G and Modbus devices may have the same
ID’s if needed since each only answers to their own protocols. The RFScada Classic mode may
also be selected, in this case the RTU emulates 2 RFScada 16 channel boards for compatibility
with legacy systems.The communications port baud rate must also be defined, and is typically
the same for the whole network, although the baud rates may be mixed.

When the PC software is used to configure the RTU after slave mode has been selected
in the Config tab (or read from the connected RTU) several of the tabs not relevant to slave
operation for this RTU disappear. When the RTU is set in RFScada slave mode the relays may
be placed in RFScada default mode by selecting the default setup button, which assigns the
relays and analog outputs to be controlled by commands arriving from the polling port. However,
any of the relays or analog outputs may be assigned for local control regardless of the polling
commands. If the RTU is set to respond as a Modbus device, then the polling Modbus master is
able to query and write any registers in the RTU. The action of the analog outputs and relays
are governed by the RTU control settings which may be set to respond to remote Modbus
commands.

15

Polled Device Setup - Master Configuration
The RTU may be configured to poll up to 255 various remote devices, accumulate data

from them and send data to certain types of device. The first 32 devices may be configured to
communicate using either 4G or Modbus protocols. The remaining devices can only be
configured to use Modbus. This is configured using the Poll Type setting. The device number is
also referred to as the Channel Number. The master continuously cycles through all enabled
polled devices.

Polled Device Setup - General
​ Some of the Polled Device settings apply to every polled device, regardless of which
protocol is used to communicate with it. The remaining settings only apply when communicating
with a polled device using Modbus. The common settings are described below.

The Enable setting enables or disables the device. If enabled, the device is polled in
order and the Live Value is updated after each successful response or set to the default setting
if the Dropout Time has elapsed since the last successful poll. If disabled, the device is never
polled and the Live Value is set to the ‘default’ setting.

The In RF Group setting enables or disables special data handling for a slave that is
configured with the same LoRa RF group value as the master. If enabled, the polled command
prefixed with the RF Group Address configured in the master. If disabled, the polled command is
not modified. If the RF Group Address is configured in the slave and the slave is communicating
using the radio, this must be enabled. See the Serial Port Configuration section for more
information on RF Group Addressing.

The Text Name is an ASCII label that is stored in the master to help users remember
which polled device is which.

The Baud Rate setting is the baud rate used when polling a specific device. Each slave
can operate at a different rate. Note that some radio modems (including the optional on board
LoRa radio) are configured to operate at a single baud rate, so it may not be possible to
communicate with devices over radios if they have different baud rates.

The Pre Poll setting configures a time delay (in milliseconds) between processing a reply
from the last command and issuing the next command. It is not normally required but is
available if needed when operating for example with older radio modems that take a substantial
time to ‘key down’ after transmitting data.

The Post Poll setting configures a time delay (in milliseconds) after the command has
been transmitted before the RTU it inspects the reply (if any) from the remote device. Typically
this value may be 50 to 500 ms with directly connected devices; it may be up to several seconds
if a radio or internet connected device is being polled.

The Dropout Time setting sets the communication timeout for a device. If a polled device
does not respond to data requests for a preset time the RTU will change the polled result in the
result table to a default value. This allows alarms or similar actions to occur if communications
are lost to a remote device. The timeout is set in 10 second increments up to about 7 days, so a
value of 3 is 30 seconds.

The Poll Type setting sets which protocol to use when communicating with the device.
The two main options are RFScada 4G and Modbus, but each has further options. The

16

RFScada 4G protocol can be configured to request 8, 16, 24, or 32 analog inputs from a device.
Requesting more than 8 analog inputs requires additional polling commands/responses since
only 8 analog inputs are included in a single 4G response. The Modbus protocol can be
configured to request a 16-bit or 32-bit register value, where the 32-bit word order (High Low vs.
Low High) can also be configured. The RTU always stores the result in High Low order, where
the high 16 bits are in the lower address and the low 16 bits are in the higher address. Some
Modbus devices store a 32-bit value in Low High order, where the low 16 bits are in the lower
address and the high 16 bits are in the higher address.

Polled Device Setup - Modbus
When the Poll Type is set to Modbus, the ‘device’ is actually a single Modbus register in

some physical unit which may be accessed via a wired or wireless connection using the polling
ports connection. Each device is configured with many individual parameters, so mixed types
and brands of equipment may easily be polled. Each Modbus-specific parameter is explained.

The Device ID setting sets the Modbus ID for each device, within the range of 0 to 255.
Multiple polled devices may have the same Device ID if multiple registers from the same
physical device are required.

The Register Address setting sets the 16-bit Modbus address to be accessed. Note that
many Modbus maps show addresses starting at 30001 or 40001; these are usually translated to
‘real’ addresses starting at 0 or 1 by the Modbus host software. The RTU will directly transmit
whatever address is programmed without adding or removing any offsets to allow full coverage
of the whole address range.

The Function Code setting is the Modbus command that will be used to access the
device, typically either command 3 or 4 (read single register or input). Function Codes of 1, 2, 5,
6, 15, and 16 are also supported. For Function Codes that read values (1, 2, 3, 4), if a
communication timeout occurs, the Live Value is set to the Default Value setting. For Function
Codes that write values (5, 6, 15, 16), the Live Value is not applicable.

The Code3,4 Count and Code3,4 Index settings apply when the Function Code is set to
3 or 4 (which can read multiple registers in a single transaction). Each polled device only stores
the result of a single 16-bit or 32-bit Modbus register, but some Modbus slaves do not have
individually addressable values. The Code3,4 Count setting sets how many registers the
Modbus command reads, and the Code3,4 Index setting sets which register the polled device
keeps as its Live Value. For example, a Modbus slave may have 8 analog inputs that can only
be accessed by reading 8 register values starting at address 100. To access the third input, the
Register Address is set to 100, the Code3,4 Count is set to 8, and the Code3,4 Index is set to 2.

The Default Value / Source Register setting configures the default Live Value for
Function Codes that read (1, 2, 3, 4) or the register in the master used as the output data for
Function Codes that write (5, 6, 15, 16).

The Multiplier and Divisor settings define the scaling operations performed on the Live
Value before storing into the scaled value register for the device. The raw Modbus value is
always stored in the Live Value registers 0 - 511. The scaled values (Raw * Multiplier / Divisor)
are stored in the Scaled Value registers 512 - 767. The Scaled Values are only stored as a
16-bit value, but the Live Values may be stored as a 32-bit value.

17

The Display Format setting sets the number of decimal places in the Live Value. This
setting does not affect the raw values read from the Modbus device, but only affects what is
shown in the Live Value field, in a similar fashion to the scaled Analog Inputs. This is not
affected by the Multiplier or Divisor.

Polled Device Setup - RFScada 4G
When the Poll Type is set to 4G, the ‘device’ is another VikingScada or 4G-compatible

RFScada device. The 4G protocol receives the raw analog inputs from each polled device and
sets the analog and digital (relay) outputs of each polled device based on the configured 4G
control parameters. This means there is no protocol configuration beyond the common polled
device configuration. However, in order to set each polled 4G slave device’s analog and digital
(relay) outputs, a separate 4G configuration is used.

For each 4G device, the master included, the analog and digital outputs are configured
individually. As an example below, the master (Unit 0) is configured to have its Relay 1 and 2
controlled by the output Live Value of Special Registers 1 and 2 respectively. Its Relay 3 is
controlled by 4G slave ID 2 (Box 2) Input 1, and its Analog Output 1 is controlled by Modbus
register 800 in the local (the unit currently connected to VikingScada) master. The 4G protocol is
generally used to route an input of any 4G device to an output of 4G device output, but can also
be used to control outputs from any Modbus register in the master.

18

Repeater Mode
In normal installations one Viking Scada device is set up as the master unit, which polls

all slave units in turn reading and writing data to them. This means that the master unit must be
able to communicate directly with all Viking Scada slave devices in the network. For some
installations such as pipelines it may not be possible to obtain reliable communications between
the master and all the slave units due to distances or obstructions. In these cases slave units
may be configured to act as repeaters, passing the data between the master and other
slaves.

Basic Repeater Operation
The concept is fairly straightforward, example ID’s are referenced to make the example

easier to follow. A repeater may be any slave unit that is configured to recognize and react to
data intended for its own ID (e.g. 5), just like any other slave. However, it is also configured to
recognize data intended for the ‘target’ slave unit (12). When it recognizes this data it translates
the data to another target address (26) which the master is not set to communicate with. Unit 5
will then impersonate a master unit by transmitting the data on to the target slave (26), which
will then respond back to the repeating slave (5). The repeating slave (5) will take the response
from (26), reconfigure it to look like data from (12) and return it to the master unit. The result is
that the master is communicating with two slaves, one (5) and the other which it thinks is (12)
but is actually the physical unit (26), relayed back via (5). The master unit is not even aware of
the existence of a repeater unit.

19

Advanced Repeater Operation
The above example may be expanded by configuring the repeating slave to respond to

multiple ‘target’ units, each corresponding to a physically non existent slave unit. For example,
in addition to the above example the repeater could also intercept data to unit 8 and send it to
physical unit 14. More than one slave repeater may exist in range of the master provided none
of the ID’s conflict, so the advanced mode may be expanded.

20

Daisy Chained Repeater Operation
More than one repeater may be placed in series, which may be useful in pipeline and

similar applications. In the example below the master is configured to communicate with 5
slaves, ID’s 1,2,3,4 and 5. The slaves 1, 2 and 3 are directly in contact with the master. Slave 3
is also a repeater, configured to intercept data intended for units 4 and 5 then translate it to units
14 and 15. The fourth slave, which the master addresses as unit 4, is actually physically
configured for address 14 and it too is also a repeater. It translates the data intended for 15 to
25, which is the final slave, physically configured as unit 25 but referred to by the master as 5.
So when data is sent from the master to unit 5 it is intercepted by 3, converted to ’15’ and sent
out. It’s then intercepted by 14, converted to 25 and sent out. It is then received by 25 which
replies. 14 receives the reply from 25, translates it back to appear to be data from 15. Unit 3
picks it up, and in turn translates it to appear to be data from 5. The master receives it and
thinks it got a direct response from unit 5. In a similar manner when the master sends a
command for unit 4 it is intercepted by unit 3 which translates it to unit 14 data, communicates
with unit 14 then returns the response to the master as if it was a response from unit 4. In all of
these examples the master unit is not aware that repeaters are in the system. The daisy
chained repeaters may be extended for more than two repeaters.

Complex Repeater Operation
Multiple repeaters may be daisy chained in series, repeaters may be on additional daisy

chains branching off the original chain and multiple units may be accessed via any unit in the
system for very complex configurations.

21

Repeater Considerations
The techniques used for repeater operation depend on repeating slaves translating data

intended for physically ‘non-existent’ slave units. The ID’s used for the non–existent and the
physical units cannot be the same if there is any possibility that the master may receive
transmissions from the remote slave, so to operate a unit via a single repeater actually requires
two slave “ID’s”. Operating a unit via two daisy chained repeaters consumes 3 ID’s, and so on.
On small systems this is not a problem, but may be a consideration in larger systems if the units
have firmware installed before 5.0 that just supports one master and 31 slave units. It is
possible to reuse an ID in a repeater to remote slave link provided the master is unable to
communicate with the remote slave; this would only be required in cases where all ID’s had
been consumed. An example is shown below. The master is enabled to communicate with units
1, 2, 3 & 4.

If communications to a repeater are lost then communication to all subsequent units
receiving signals via the repeater will be lost too. Another factor to consider when using repeater
mode are the time delays associated with transmission of data back and forth between all the
repeaters, so timeout settings and scanning rates may need to be adjusted as the repeater
depth is increased; this may be done from the ‘radio config’ settings. The default settings allow
for two daisy chained repeaters which would cover most normal operations.

22

Repeater Requirements and Configuration
Configuration is straightforward. First assign ID’s for units in the system, which will make

the process more straightforward. The configuration for the first example will be explained.

Master Config:
Configure it to communicate with 2 slave units, ID’s 5 and 12.

Slave Unit 26 (Virtual Slave Unit 12):
This unit will be addressed by the master as 12. It is actually configured with an ID of 26.
Configure it as a normal slave with an ID of 26.

Slave Unit 5:

23

This unit will be the repeater. It has an ID of its own as 5, so set its ID as 5. Any reads or writes
the master requests from Unit 5 will come directly to and from this unit. If the unit attached to the
VikingScada software is capable of repeater operation (and a slave) a ‘Repeater Mode’ tab is
visible to set the repeater configuration. In this example the repeater source of 12 needs to be
set to target 26. Change the target from None to 26 and write the configuration. All other units
(in this example) should remain as None.

Registers 9200 - 9454

Scaled Slave Analog Input
Scaled Slave Analog Input values can be read from the master when the scale values for

each 4G slave are configured in the master.

A master unit receives only raw analog inputs from each of its 4G slaves. The analog

input scale for each 4G slave can be configured in the master so scaled values can be observed
without manual calculation. This configuration exists only in the master and is not read from the
slaves nor sent to the slaves. The Analog Input scaling is set for slaves the same way as for the
master, but the slave ID indicates which slave is to be scaled. The example below is showing
and configuring scaling for slave ID 2.

24

These scaling values are used only in the master and not sent to the slaves. The results
of the scaled slave inputs can be seen on the Current Values tab or in Modbus registers 15385 -
16376 (768 - 799 for the master’s scaled inputs).

Radio Signal (RSSI) During Communications
​ The VikingScada LoRa radios measure the Received Signal Strength Indicator (RSSI)
for each packet that they receive. The latest value as a percentage of full strength is saved for
each unit the device received. The Viking Scada units automatically detect whether an RSSI
value is provided with each received packet, so no special configuration is needed. Devices that
are connected using a direct serial connection show the RSSI as N/A to indicate that packets
are being received but no RSSI is applicable.

Radio Interference (RSSI) for a Channel
​ Each channel can be scanned for potential radio interference before selecting a channel
for a network. The radio module can be put into a channel scanning mode where the Received
Signal Strength Indicator (RSSI) is measured around 50 times per second. An algorithm is used
to calculate an approximate level of interference (as a percentage) seen on each channel. The
highest interference percentage is saved for each channel to help find channels clear of
potential interference. The values are cleared by writing a 0 to them. When the scanning mode
is enabled, no communications are possible to/from the scanning unit.

25

Test Registers
​ Several registers are provided for diagnostic or test purposes.

The firmware operates in an infinite loop that cycles very quickly. A register that
measures the performance of this loop (Address 858) shows how many times the loop cycles
every second, roughly 6000. This can be a useful diagnostic to verify the RTU is operating as
expected.

Sometimes it is useful to use an automatically varying Modbus value as the source of an
Analog Output or Special Register to verify correct operation of the configured RTU logic or to
check the operation of a separate device. The test registers include values that ramp up or
down as follows:

●​ Slowly increase from 0 to 65535 over about 10 seconds, then wraps back to start at 0
again (Address 852)

●​ Slowly decrease from 65535 to 0 over about 10 seconds , then wraps back to start at
65535 again (Address 853)

●​ Very slowly increase from 0 to 65535 over about 2 minutes, then wraps back to start at 0
again (Address 854)

●​ Very slowly decrease from 65535 to 0 over about 2 minutes, then wraps back to start at
65535 again (Address 855)

●​ Very quickly increase from 0 to 65535 over about 1 second, then wraps back to start at 0
again (Address 856)

●​ Very quickly decrease from 65535 to 0 over about 1 second, then wraps back to start at
65535 again (Address 857)

Modbus Map
All registers may be read with Modbus Command 3 or Command 4. The address of

30001 for Command 4, 40001 for Command 3 is the same as 00000. The RTU does not
translate the address it receives. It is necessary to use addresses starting at 0000. The registers
may also be written using commands 6 (write single register) or 16 (write multiple registers).
Note that the RTU will process a maximum of 32 registers in a single command. Registers 0 -
1999 and 15000 - 16663 are volatile and may change back to other values. Registers 2000 -
14999 are non-volatile and are saved across power failures.

 Warning
The RTU stores configuration settings in non volatile memory which has a finite lifetime,
limited by the number of writes (typically 10,000 to 100,000 writes). Software which writes to

26

the non-volatile RTU configuration registers (2000 – 14999) should prevent continuous writes
to the RTU memory. See the Sticky Registers section for more details.

Below is the map of all Modbus Registers. For brevity, many registers are part of a

sequential list and are described only once. The beginning and ending of these register lists are
noted explicitly with ellipses (...) in between indicating a repeating pattern in between. Any
descriptions are only included at the start of the list but apply to each element in the list. For
example there may be 256 polled devices so a related group of registers is repeated 256 times
in the full map but only registers for polled devices 1, 2, and 256 explicitly shown.
​

Address Value Notes

0 Polled Device 1 Value - high 16 bits Both hi/lo used for a 32-bit device. Just low 16 bits used for a
16-bit device. Start of volatile RAM register section 1

1 Polled Device 1 Value - low 16 bits

2 Polled Device 2 Value - high 16 bits

3 Polled Device 2 Value - low 16 bits

… …

510 Polled Device 256 Value - High 16 bits

511 Polled Device 256 Value - Low 16 bits

512 Polled Device 1 Scaled Value 16 bits POLLSCALED. Made by (raw * mult) / divisor

513 Polled Device 2 Scaled Value 16 bits

… …

767 Polled Device 256 Scaled Value 16 bits

768 Analog In 1 scaled value 16 bits ANINSCALED

769 Analog In 2 scaled value as above

… …

799 Analog In 32 scaled value as above

800 Analog In1 un-scaled raw 16-bit value Analog In Raw from this unit. ANIN contains all polled units
analog ins

801 Analog In2 un-scaled raw 16-bit value

… …

831 Analog In32 un-scaled raw 16-bit value

832 Analog Output 1 current value, 16-bit integer ANOUT1VAL

833 Analog Output 2 current value, 16-bit integer

… …

839 Analog Output 8 current value, 16-bit integer

840 Digital 1 to 16 inputs packed as a 16-bit integer. Lsb =
Digital in 1 DIGINIMAGE1

841 Digital 17 to 32 inputs packed as a 16-bit integer. Lsb =
Digital in 17 DIGINIMAGE2

27

842
Image of relays 1 to 16. The current state of the relay
outputs 1 to 16 packed as a 16-bit integer. bit0 = relay 1,
bit15 = relay 16

RELAYIMAGE

843 Reserved

… …

851 Reserved

852 Test register. Slow ramp up over several seconds TESTREG

853 Test register. Slow ramp down over several seconds

854 Test register. Slow ramp up over several minutes.

855 Test register. Slow ramp down over several minutes.

856 Test register. Quickly ramps up.

857 Test register. Quickly ramps down.

858 Performance Monitor lower 16 bits PERFORM Count of main loop excursions per second

859 Comm state summary of all enabled devices. COMMSTATEGLOBAL. Comm state of all devices. 0 = no
response, 1= some OK, 2 = All OK

860 Packed Comm state of devices 1 to 16 COMMSTATE e.g. 0x000E indicates devices 2,3

861 Packed Comm state of devices 17 to 32

862 Packed Comm state of devices 33 to 48

863 Packed Comm state of devices 49 to 64

864 Packed Comm state of devices 65 to 80

865 Packed Comm state of devices 81 to 96

866 Packed Comm state of devices 97 to 112

867 Packed Comm state of devices 113 to 128

868 Packed Comm state of devices 129 to 144

869 Packed Comm state of devices 145 to 160

870 Packed Comm state of devices 161 to 176

871 Packed Comm state of devices 177 to 192

872 Packed Comm state of devices 193 to 208

873 Packed Comm state of devices 209 to 224

874 Packed Comm state of devices 225 to 240 eg 0x8001 indicates devices 225 and 240 are responding.

875 Packed Comm state of devices 241 to 256

876 Reserved

… …

881 Reserved

882 Factory lock. Write various values, nothing stored. FACTORYLOCK Write FACTORYKEY to unlock locked regs,
such as S/N

883 Special register 1
Special register results. These volatile registers 1 to 32
contain the results generated by the special control routines
(see regs 8280-8471).

884 Special register 2 COMMSTATE e.g. 0x000E indicates devices 2,3

… …

914 Special register 32

28

915 Special register 33

Volatile registers available for general use; eg for remote
control of relays or analog outputs. Registers 33 to 64 are
not assigned to special control routines, but they will always
contain 0 upon RTU power up. Registers 33 to 40 may be
written to by Toggle() functions.

916 Special register 34 May be written to by Toggle 1 function.

917 Special register 35 May be written to by Toggle 2 function.

918 Special register 36 May be written to by Toggle 2 function.

919 Special register 37 May be written to by Toggle 3 function.

920 Special register 38 May be written to by Toggle 3 function.

921 Special register 39 May be written to by Toggle 4 function.

922 Special register 40 May be written to by Toggle 4 function.

923 Special register 41

… …

946 Special register 64

947 4G-commanded digital outputs 1-16 DIGCOMMAND1, Written to if we are RFScada slave

948 4G-commanded digital outputs 17-32 DIGCOMMAND2, Written to if we are RFScada slave

949 4G-commanded analog output 1 RFSLAVEANALOG1, Written to if we are RFScada slave

950 4G-commanded analog output 2

… …

956 4G-commanded analog output 8

957 Reflect input state in RFScada classic mode RF4GOPTIONS

958 Analog Unit 0 In 1 un-scaled raw 16-bit value Raw Analog Input Table. Start Unit 0, Input 1 ANIN 32*32 =
1024 length. Table only used if polling any 4G devices

959 Analog Unit 0 In 2 un-scaled raw 16-bit value

… …

989 Analog Unit 0 In 32 un-scaled raw 16-bit value

990 Analog Unit 1 In 1 un-scaled raw 16-bit value

991 Analog Unit 1 In 2 un-scaled raw 16-bit value

… …

1021 Analog Unit 1 In 32 un-scaled raw 16-bit value

… …

1980 Analog Unit 31 In 31 un-scaled raw 16-bit value

1981 Analog Unit 31 In 32 un-scaled raw 16-bit value Raw Analog Input Table End

1982 Image of relays 17 to 32 RELAY1732IMAGE

1983 Reserved

1984 Reserved

1985 Viking Scada type VS2 = 102, VS4 = 104

1986 Spare RAM

… …

1999 Spare RAM End of volatile RAM register section 1

29

2000 Polled Device 1 Baud Polled Device Config Table. Start of non-volatile EEPROM
register section (saved across power cycles).

2001 Polled Device 1 Modbus ID

2002 Polled Device 1 Modbus Register Addresss

2003 Polled Device 1 Modbus Function Code 3 or 4

2004 Polled Device 1 Pre-poll time Milliseconds

2005 Polled Device 1 Post-poll time Milliseconds

2006 Polled Device 1 Poll type

0 = Modbus 16-bit
1 = Modbus 32-bit H/L
2 = Modbus 32-bit L/H
3 = 4G 8-analogs
4 = 4G 16-analogs
5 = 4G 24-analogs
6 = 4G 32-analogs

2007 Polled Device 1 Dropout timeout Timeout = value * 10 seconds

2008 Polled Device 1 Default value upper 16 bits

2009 Polled Device 1 Default value lower 16 bits

2010 Polled Device 1 Text Name 1 2 ASCII characters

2011 Polled Device 1 Text Name 2 2 ASCII characters

2012 Polled Device 1 Text Name 3 2 ASCII characters

2013 Polled Device 1 Text Name 4 2 ASCII characters

2014 Polled Device 1 Polled value multiplier

2015 Polled Device 1 Polled value divisor

2016 Polled Device 1 Modbus 3/4 Count/Index

2017 Polled Device 1 Spare2

2018 Polled Device 2 Pre-poll time

2019 Polled Device 2 Post-poll time

2020 Polled Device 2 Poll type

2021 Polled Device 2 Dropout timeout

2022 Polled Device 2 Default value upper 16 bits

2023 Polled Device 2 Default value lower 16 bits

2024 Polled Device 2 Text Name 1

2025 Polled Device 2 Text Name 2

2026 Polled Device 2 Text Name 3

2027 Polled Device 2 Text Name 4

2028 Polled Device 2 Polled value multiplier

2029 Polled Device 2 Polled value divisor

2030 Polled Device 2 Modbus 3/4 Count/Index

2031 Polled Device 2 Spare2

… …

30

6590 Polled Device 256 Pre-poll time

… …

6607 Polled Device 256 Spare2

6608 Analog input 1 display resolution

0 = scaled input * 100000
1 = scaled input * 10000
2 = scaled input * 1000
3 = scaled input * 100
4 = scaled input * 10
5 = scaled input * 1
6 = scaled input * 0.1
7 = scaled input * 0.01
8 = scaled input * 0.001
9 = scaled input * 0.0001
10 = scaled input * 0.00001
11 = scaled input * 0.000001
12 = scaled input * 0.0000001
13 = scaled input * 0.00000001
14 = counted pulses * 1

… …

6639 Analog input 32 display resolution

6640 Analog output 1 span source address

6641 Analog output 1 span source type 0 = 16-bit source
1 = 32-bit source

6642 Analog output 1 span input high upper 16 bits

6643 Analog output 1 span input high lower 16 bits

6644 Analog output 1 span input low upper 16 bits

6645 Analog output 1 span input low lower 16 bits

6646 Analog output 1 span output high

6647 Analog output 1 span output low

6648 Analog output 2 span source address

6649 Analog output 2 span source type

6650 Analog output 2 span input high upper 16 bits

6651 Analog output 2 span input high lower 16 bits

6652 Analog output 2 span input low upper 16 bits

6653 Analog output 2 span input low lower 16 bits

6654 Analog output 2 span output high

6655 Analog output 2 span output low

… …

6696 Analog output 32 span source address

… …

6703 Analog output 32 span output low

31

6704 Relay 1 source address

If DIGCOMMAND1 or DIGCOMMAND2: Commanded in
slave mode
If one of ANIN: 4G device input above or below 21000
If any others: register value zero or non-zero

6705 Relay 2 source address

… …

6735 Relay 32 source address

6736 Reserved

… …

6800 Reserved

6801 Analog input 1 span input high

6802 Analog input 1 span input low

6803 Analog input 1 span output high

6804 Analog input 1 span output low

6805 Analog input 2 span input high

6806 Analog input 2 span input low

6807 Analog input 2 span output high

6808 Analog input 2 span output low

… …

6925 Analog input 32 span input high

6926 Analog input 32 span input low

6927 Analog input 32 span output high

6928 Analog input 32 span output low

6929 Comm1 (System) Mode

6930 Comm1 (System) Baud

6931 Comm1 (System) Modbus ID

6932 Comm1 (System) Gap timeout

6933 Comm2 (Poll) Mode

6934 Comm2 (Poll) Baud

6935 Comm2 (Poll) Modbus ID

6936 Comm2 (Poll) Gap timeout

6937 Modbus site name 1 2 ASCII characters

6938 Modbus site name 2 2 ASCII characters

6939 Firmware version eg. 12 = v1.2

6940 Serial number

6941 Power on hours

6942 Reserved

6943 Reserved

6944 Comm2 (Poll) Radio channel

6945 Comm2 (Poll) Comms fail timeout

32

6946 Comm2 (Poll) slave poll ID

6947 Comm2 (Poll) comms fail override

6948 Reserved

… …

6951 Reserved

6952 Inputs 1-8 flipped

6953 Toggle 1 pointer 1

6954 Toggle 1 pointer 2

6955 Toggle 2 pointer 1

6956 Toggle 2 pointer 2

6957 Toggle 3 pointer 1

6958 Toggle 3 pointer 2

6959 Toggle 4 pointer 1

6960 Toggle 4 pointer 2

6961 Reserved

6962 Spare EEPROM

… …

6999 Spare EEPROM

7000 4G Config device 1 relay 1 source address

7001 4G Config device 1 relay 2 source address

… …

7031 4G Config device 1 relay 32 source address

7032 4G Config device 1 analog out 1 source address

7033 4G Config device 1 analog out 2 source address

7034 4G Config device 1 analog out 3 source address

7035 4G Config device 1 analog out 4 source address

7036 4G Config device 1 analog out 5 source address

7037 4G Config device 1 analog out 6 source address

7038 4G Config device 1 analog out 7 source address

7039 4G Config device 1 analog out 8 source address

7040 4G Config device 2 relay 1 source address

7041 4G Config device 2 relay 2 source address

… …

7079 4G Config device 2 analog out 8 source address

… …

8240 4G Config device 32 relay 1 source address

… …

8279 4G Config device 32 analog out 8 source address

8280 Special register 1 type

33

… …

8311 Special register 32 type

8312 Special register 1 source

… …

8343 Special register 32 source

8344 Special register 1 high threshold upper 16 bits

8345 Special register 1 high threshold lower 16 bits

8346 Special register 2 high threshold upper 16 bits

8347 Special register 2 high threshold lower 16 bits

… …

8406 Special register 32 high threshold lower 16 bits

8407 Special register 32 high threshold lower 16 bits

8408 Special register 1 low threshold upper 16 bits

8409 Special register 1 low threshold lower 16 bits

8410 Special register 2 low threshold upper 16 bits

8411 Special register 2 low threshold lower 16 bits

… …

8470 Special register 32 low threshold upper 16 bits

8471 Special register 32 low threshold lower 16 bits

8472 Reserved

8663 Reserved

8664 Sticky user register 1

8665 Sticky user register 2

… …

8919 Sticky user register 256

8920 Spare EEPROM

… …

9199 Spare EEPROM

9200 Repeater Target for Slave 1

9201 Repeater Target for Slave 2

… …

9454 Repeater Target for Slave 255

9455 Slave Ain Input Span High for Slave 1 Input 1

9456 Slave Ain Input Span Low for Slave 1 Input 1

9457 Slave Ain Output Span High for Slave 1 Input 1

9458 Slave Ain Output Span Low for Slave 1 Input 1

9459 Slave Ain Input Span High for Slave 1 Input 2

9460 Slave Ain Input Span Low for Slave 1 Input 2

9461 Slave Ain Output Span High for Slave 1 Input 2

34

9462 Slave Ain Output Span Low for Slave 1 Input 2

… …

9579 Slave Ain Input Span High for Slave 1 Input 32

9580 Slave Ain Input Span Low for Slave 1 Input 32

9581 Slave Ain Output Span High for Slave 1 Input 32

9582 Slave Ain Output Span Low for Slave 1 Input 32

9583 Slave Ain Input Span High for Slave 2 Input 1

9584 Slave Ain Input Span Low for Slave 2 Input 1

9585 Slave Ain Output Span High for Slave 2 Input 1

9586 Slave Ain Output Span Low for Slave 2 Input 1

9587 Slave Ain Input Span High for Slave 2 Input 2

9588 Slave Ain Input Span Low for Slave 2 Input 2

9589 Slave Ain Output Span High for Slave 2 Input 2

9590 Slave Ain Output Span Low for Slave 2 Input 2

… …

13419 Slave Ain Input Span High for Slave 31 Input 32

13420 Slave Ain Input Span Low for Slave 31 Input 32

13421 Slave Ain Output Span High for Slave 31 Input 32

13422 Slave Ain Output Span Low for Slave 31 Input 32

13423 Slave Ain Display Precision for Slave 1 Input 1

13424 Slave Ain Display Precision for Slave 1 Input 2

… …

13454 Slave Ain Display Precision for Slave 1 Input 32

13455 Slave Ain Display Precision for Slave 2 Input 1

13456 Slave Ain Display Precision for Slave 2 Input 2

… …

14414 Slave Ain Display Precision for Slave 31 Input 32

14415 Special Reg 1 Trip On Delay

14416 Special Reg 2 Trip On Delay

… …

14446 Special Reg 32 Trip On Delay

14447 Special Reg 1 Trip Off Delay

14448 Special Reg 2 Trip Off Delay

… …

14478 Special Reg 32 Trip Off Delay

15000 RSSI Poll Count Total

15001 RSSI Poll Count Slave 1

… …

15256 RSSI Poll Count Slave 256

35

15257 Spare RAM 1

… …

15384 Spare RAM 128

15385 Scaled Slave Ain for Slave 1 Input 1 These are live values are in RAM (lost after power cycle)

15386 Scaled Slave Ain for Slave 1 Input 2

… …

15416 Scaled Slave Ain for Slave 1 Input 32

15417 Scaled Slave Ain for Slave 2 Input 1

15418 Scaled Slave Ain for Slave 2 Input 2

… …

16376 Scaled Slave Ain for Slave 31 Input 32

16377 LoRa RSSI for Master

16378 LoRa RSSI Percent for Slave 1 0 = No unit seen, 1 = Unit seen without RSSI, 2-100 = RSSI
percent

16379 LoRa RSSI Percent for Slave 2

… …

16632 LoRa RSSI Percent for Slave 256

16633 LoRa Channel Scan RSSI Enable

16634 LoRa Channel Scan RSSI Percent Ch 0

16635 LoRa Channel Scan RSSI Percent Ch 1

… …

16660 LoRa Channel Scan RSSI Percent Ch 26

16661 LoRa Channel Scan Low Ch

16662 LoRa Channel Scan High Ch

16663 LoRa Channel Scan Current Ch

36

	
	Technical Specifications
	SYSTEM CONFIGURATION & PROGRAMMING
	Serial Port Configuration and Data Access
	 Warning
	Inputs
	Analog Inputs
	Example 1:
	Example 2:

	Digital Inputs

	Analog Outputs
	Example 1 - Basic Analog Input Mirror:
	Example 1 - Advanced Analog Output from Modbus Slave:

	Digital (Relay) Outputs
	Special Registers
	Example: Special Register Lead / Lag Tank Level Control

	Toggle Registers and Routines
	Example: Toggle – Adding pump switching to the Special Register example above

	Sticky Registers
	Polling Port Device Setup - Master & Slave Configuration
	Polled Device Setup - Slave Configuration
	Polled Device Setup - Master Configuration
	Polled Device Setup - General
	Polled Device Setup - Modbus
	Polled Device Setup - RFScada 4G

	
	

	
	
	Repeater Mode
	Basic Repeater Operation
	Advanced Repeater Operation
	Daisy Chained Repeater Operation
	Complex Repeater Operation
	Repeater Considerations
	Repeater Requirements and Configuration

	Scaled Slave Analog Input
	Radio Signal (RSSI) During Communications
	Radio Interference (RSSI) for a Channel
	Test Registers
	Modbus Map
	 Warning

